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INTRODUCTION ANALYSIS 

Finned surfaces have been in use for a long period as a heat 
dissipation mechanism. The optimization of  fins is of  major 
importance in the thermal design of  a heat exchanger. The 
design criteria of  fins are different for various applications, 
but the primary concern is performance, weight and cost. In 
the optimization of  a fin with uniform cross section, it is 
usual to obtain the optimum dimensions of  a fin which dis- 
sipates the maximum heat for a given mass. 

Recently, numerous works [1-7] have been conducted to 
optimize the dimensions of  fins in convective as well as boil- 
ing heat transfer. All these studies were based on a one- 
dimensional heat conduction assumption and very few analy- 
ses included a convective boundary condition at the fin tip. 
The one-dimensional approach is convenient, but may be in 
error for certain physical conditions. Irey [8] and Lau and 
Tan [9] showed that the one-dimensional assumption for a 
fin is valid only for a transverse Biot number much less than 
unity. Aparecido and Cotta [10] proposed a modified one- 
dimensional formulation to improve the accuracy of  the one- 
dimensional solution. Whether the criterion established by 
Irey [8] and Lau and Tan [9] is valid for the optimum dimen- 
sions of  fins or not still remains to be determined. 

The optimum dimensions of  a two-dimensional longi- 
tudinal rectangular fin were investigated analytically by 
Look and Kang [11]. In their work, considering a periodic 
root temperature and different constant convection 
coefficients at top, bottom and tip surfaces of  a fin, the 
relationship between the aspect ratio for 0.99 Qopt and fin's 
usefulness was developed. Razelos and Georgiou [12] sug- 
gested that the measure of  the heat transfer augmentation 
can be expressed by effectiveness or the removal number 
which can serve as a criterion in assessing the solutions of 
the classical one-dimensional method. Lately, Chung and 
Iyer [13] have solved the same fin problem with uniform base 
temperature and heat transfer from tip. Their results are very 
complicated for use due to the consideration of  so many 
parameters. 

The purpose of  this study is first to determine the optimum 
dimensions of  a one-dimensional longitudinal rectangular fin 
and a cylindrical pin fin. Considering heat transfer from 
the fin tip, the corresponding two-dimensional problems are 
solved to check the validity of  the one-dimensional models. 
To circumvent the tedious procedures in solving the two- 
dimensional fin problems, a modified one-dimensional 
solution for fin optimization is also presented. In addition, 
special cases of  fins with insulated tips are also taken into 
account. 

In this study, assumptions are made of  steady-state heat 
conduction through the fin, constant thermal conductivity 
of  the fin material, no heat source in the fin, and uniform 
ambient temperature. In addition, the temperature of  the 
base of  the fin is assumed to be uniform. The circumferential 
surface heat-transfer coefficient, h, and the heat-transfer 
coefficient at the free end of  the fin, h., are taken as constant. 

Rectangular fin 
In this optimization work of  a longitudinal rectangular 

fin, the principle is to find a fin with maximum heat dis- 
sipation for a given fixed profile area, heat transfer 
coefficient, and thermal conductivity. The two-dimensional 
solution of  this fin problem may be readily found in [10, 
14]. Differentiating the heat transfer rate Q with respect to 
~t(= lib) and setting the result equal to zero yields 

L 4"2 sin2 (24.) [-e + cot(k.) tanh(4~o) 1 

.= L [22. + sin(22.)] 3 L c°t(2.) + e tanh(~bo)J 

2, sin 2 (2,) s ech2 (~o) 
+ x7 

,~t [22, + sin(22,)]2 [cot(2,) + e tanh(q~o)]2 

" {e cot(2.) -- 2~[42. + sin(22.)] 

• [cot: (2.) _ e2]} = 0 (1) 

where e = ho/h and tpo = 22n" %ot, Note that the eigenvalues 
An can be obtained from 

22,- tan 2, - B a • C¢~-p[/2 = 0. (2) 

For any given Ba, the optimum aspect ratio of the fin can be 
determined from equations (1) and (2). An iterative tech- 
nique is used to find ~topt. Initially, an ~topt is guessed at a 
specified Ba, where all the 2,'s can be obtained from equation 
(2). For  a given e, the optimum aspect ratio and the cal- 
culated eigenvalues are then substituted into equation (1). 
The procedure is continued until equation (1) is satisfied 
within a tolerance of  10 -7. 

In the corresponding one-dimensional solutions, the 
maximum heat dissipation is obtained by taking the deriva- 
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NOMENCLATURE 

A profile area of a rectangular fin [m 2] 
B~ Biot number,  hAl/2/k 
Bi Biot number,  hb/(2k) 
By Biot number,  hV"3/k 
b fin thickness (or diameter) [m] 
h, he heat transfer coefficients at lateral and tip 

surface [W m -2 K - q  
k thermal conductivity of  fin material 

[ W m  i K- I ]  
/ fin length [m] 
Q dimensionless heat transfer rate, q/(kOb W) 

for a rectangular fin and qh/(4nk: Ob) for 
a cylindrical fin 

q heat transfer rate through fin base 
[w] 

V volume of a cylindrical fin [m 3] 

W width of  a longitudinal rectangular fin [m]. 

Greek symbols 
ct aspect ratio, l/b 
c ratio of  heat transfer coefficients of  fin tip 

to lateral fin surface, hdh 
0 fin temperature in excess of  ambient [°C] 
2~ eigenvalues. 

Subscripts and superscripts 
b fin base 
dim dimension 
e fin tip 
o opt imum 
opt opt imum 
* percentage error. 

tive of  fin's heat transfer with respect to the aspect ratio and 
setting it equal to zero. It gives 

2~o 1/2 + (1 + tOo) tanh(~o) + 3~'o (Wo - 1) sech 2 (¢o) = 0 

(3) 

where (no e2/2 . " )<2 /C2B x. 3<4 = Ba 0Copt and I//o = N/ \  a) t~opt" 
To extend the applicability range of  the one-dimensional 

formulation, a modified one-dimensional solution [10] is 
introduced. The opt imum relationship is derived as 

88Ba~/(~opt) + [4#° + e:B 3'2 (8N/(aopt)  -}- Ba) '/2 ] tanh(#o) 

2 312 2 2 2 + [4/~o -- 32BaCtopt + eB~ + 2e B~ (60top t 

+B,x/(ctopt))] sech2(#o) = 0 (4) 

where #o = 4~optx/Ba(8~/(~opt) +Ba)-I,,2. 
Apparently, the opt imum aspect ratio of  the one-dimen- 

sional rectangular fin can be obtained from equations (3) 
and (4) for any given Ba and 8. 

Cylindrical pin fin 
The heat transfer rate of  a cylindrical fin is optimized for 

a fixed fin volume and given constant  thermal properties. 
Following the same mathematical  procedures as those given 
in the case o f  a rectangular fin yields 

,=~ (1 +F~)2F,, 

sech2 (4)°) - 3F 2 - 3)  
[F. + e tanh(q~o)] Iv° F" (F~_- ~ 

 +3r)j 
+8 I - - -+2 .F~  F] +--~2~ \ - . 

,~ 23 F8 + r ,  tanh(~bo)q 

/" 4 3F3 2 r 
• ~3F,, - z~-~ +4F .  - ~" + 1 ) =  0 (5) 

where r ,  = Jo(2.)/J~ (2,) and ~bo = 22," ~opt. The eigenvalues 
13 are evaluated from (2n%pt) / "2,. Jl (2,) - B~- Jo(2,) = 0. The 

solution procedures are identical to those of a rectangular 
fin case. 

For one-dimensional solutions, by letting dQ/dc~ = 0, one 
obtains 

/ 4 \  I/6 I- 8 2 B y / 4  \ b37  3~/8~{~) +3[l+-~-[~) ]tanht¢o) 
+ I582/ctB3\;/2 / 4 \  1/6 q 

(6) 

for classical one-dimensional formulation and 

4e, x/3B~:Z(9Vo + Bv) + [3(4vo + e? BOx/(6Vo +Bv) 

+ 36V2o/~/(6vo + BO + 82B~(6Vo + B~)3/2/vo] tanh((o) 

+ 12~/3B~/2 [12ctvo 2/(6vo + B~) + 82 BvCtop t (5Vo + B~)/Vo 

- 12c%,Vo-e, Vo] sechZ((o) = 0 (7) 

for a modified one. Note that in equations (6) and (7) ¢o 
and (o are defined as ¢o =2~/B~(4o?opffn) 1/6 and (o = 
4~oo,~/(3BJ(6vo+B~)). It is apparent  that, once B~ and 8 
are given, the opt imum aspect ratio, crop, can be evaluated 
from equations (6) and (7). 

RESULTS AND DISCUSSION 

It is worthwhile to note that there are design restrictions 
for opt imum fins with heat transfer dissipated from tips for 
both of rectangular fins and cylindrical pin fins. A max imum 
B~ or By, denoted as (Ba)m,x or (By) . . . .  is found for e > 0. No 
opt imum aspect ratios of  fins are found for B, > (Ba)m~x or 
Bv > (By) . . . .  For design consideration, the dependence of  
(Ba)max and (Bv)ma x on 8 is given in Fig. 1. Note that (Ba)ma~ 
and (Bv)m~ are pretty small at a larger e and increase with 
decreasing 8 for the proposed three solutions. The value of  
(Ba)max or (By)max tends to infinity as 8 approaches zero. It is 
also shown that the max imum values of  Ba and By evaluated 
from both o f  the one-dimensional formulations are a little 
higher than  that from the two-dimensional one. The dis- 
crepancies are insignificant at a larger 8 but  are pronounced 
especially at a smaller e. No  opt imum dimensions ratios of  
fins are found in the regions above the six given curves. 
Thus,  it is obvious that the design from two-dimensional 
case imposes more severe restrictions than from the one- 
dimensional one. 
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Fig. 1. Dependence of  (B~)m~ or (B0,~,~ on ~. 

To show the differences between one-dimensional results 
and two-dimensional ones, it is convenient to define 

( ~ ,  __ (~opt ) two~dim - -  ( 6op t ) one - d im  % ( 8 )  

where 5 may be ct or Q. The comparison of  :topt and the 
corresponding Qopt from one and two-dimensional analyses 
is depicted in the upper and lower parts of  Fig. 2. Note  that  
the end points o f  curves are (B,)m~x. For  very low values of  
B~, which also implies very small values o f  Blot number,  the 
differences among  the three solutions are relatively small. It 
is shown that  ~t* and  Q* of tbe  one-dimensional and modified 
one-dimensional analyses are small except that  B~ is close to 
(B~)m~. With an increase of  B~, the magni tude of  errors of  
both solutions becomes larger. It should be pointed out  that  
the opt imum aspect ratios and corresponding heat  transfer 
rate predicted from modified one-dimensional analyses are 
very close to the two-dimensional solutions especially for an 
insulated-tip fin. In the lower part  of  Fig. 2, the error rate 
percentages of  Q* for e = 0.7 and 1 do not  clearly show up 

because the data  almost  completely coincide with Q* for 
e = 0 and 0.3 and are accurate up to 0.2% for the modified 
one-dimensional results. 

Figure 3 shows the dependence of  Crop, and at* on e for 
B, = 0.05 and 0.1. In this figure, it is noted that  the opt imum 
aspect ratios predicted from modified one-dimensional 
model almost overlaps the two-dimensional results. In 
addition, the opt imum aspect ratios of  rectangular fins 
decrease with increasing e. Thus,  the usual  study of  fin opti- 
mization problem employing the assumpt ion of  an  insulated 
free end overestimates crop t. The overestimated values of  :top t 
become large especially at larger e. The error rate, ct*, 
increases with ~ for the one-dimensional solutions whereas a 
very slight effect of  e on ~* is observed for the modified one- 
dimensional ones. Also note that  ct* increases with Ba for a 
fixed e for both of  the one-dimensional solutions. 

For a cylindrical pin fin, the percentage errors of  ~topt and 
Qopt vs Bv are presented in the upper and lower parts of  Fig. 
4. Also, the end points of  curves are (Bv)m~x. This figure 
shows that ~t~ predicted from the modified one-dimensional 
method is smaller than  that  of  one-dimensional approach at 
most  of  the values of  By for e = 0. As for the case of  e > 0, 
the error rates of  both models are mostly small except for 
the values of  By close to (B0~x.  As a whole, the solutions 
calculated from the modified one-dimensional mode are 
more accurarte than  those from the one-dimensional 
approach. 

For a fin with insulated free end, it was confirmed [8, 
9] that the major  parameter  governing the accuracy of  the 
approximate solutions is the transversal Blot number,  B~. 
The dependence of  ct* and Q* on Bi is displayed in Fig. 5. It 
is observed that the error rates of  both of  the one-dimensional 
solutions are small at a smaller B~ and increase with &. Thus,  
B~ may  also serve as a criterion in evaluating the accuracy of 
the one-dimensional solutions. In addition, for B~ ~< 1, the 
error rates of  ~top t and Qopt are around 2% for modified 
one-dimensional solution and are 22% for one-dimensional 
formulation. This points to the fact that  the modified 
approach reduces the error by an order of  magni tude com- 
pared to that  given by the classical one-dimensional 
approach. In this case, it is evident that  the modified one- 
dimensional model prevails over the one-dimensional model 
in the predictions of  the aspect ratio and heat  transfer rate 
of  fins. Hence, the modified one-dimensional method is also 
very useful in extending the limits of  applicability for the 
one-dimensional approximation for e = 0. 
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Fig. 2. Percentage error of  ctopt and Qopt for the one-dimen- 
sional and modified one-dimensional solutions of  a rec- 

tangular  fin. 
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Fig. 3. Dependence of  0cop t and ct* on e for B, = 0.05 and 0.l 

(rectangular fin). 
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Fig. 4. Percentage error of ~op, and Qopt for the one-dimen- 
sional and modified one-dimensional solutions of a cyl- 
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Fig. 5. Percentage error of ~op, and Qop, for the one-dimen- 
sional and modified one-dimensional solutions of  a rec- 

tangular fin and a cylindrical pin fin. 

C O N C L U S I O N S  

(1) For a fin with convection at tip, there exists a 
maximum value of Ba. No optimum aspect ratios of fins can 
be found for Ba > (B,)m,x. In addition, no design restriction 

in Ba for an insulated-tip fin. This is also true for a cylindrical 
pin fin case. 

(2) The calculated optimum aspect ratios of both a rec- 
tangular fin and a cylindrical fin with heat transfer from the 
free end are smaller than those of  fin with insulated tips. 
Also, ~opt decreases with e. 

(3) In the evaluation of :top t and Qop,, B, or By may serve 
as a criterion in assessing the validity of one-dimensional 
approximation. It is shown that the percent error rates of 
:tor t and Qopt grow with Ba or By and reach a maximum at 
(Ba)ma x or (Bv)m~ x for e > 0. 

(4) In addition to Ba and B~, B i is also a good measure in 
evaluating the accuracies of  Crop, and Qopt for both rectangular 
fins and cylindrical pin fins with insulated tips. 

(5) In predicting ~op, and Oopt, the optimum data derived 
from modified one-dimensional model may extend B~, Bv 
and B, to a higher value with reasonable accuracy. 
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